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1. Executive Summary 
 

This deliverable is in line with Article 19.1 of the Grant Agreement 823916 and provides the “IoT 
applied tools and technologies and data analytics module” of the SmartShip project funded by the 
Horizon 2020-MSCA-RISE-2018 Action. 

The principal aim of SMARTSHIP is to foster knowledge exchange between experts of complementary 
technology fields (IoT, Data Analytics, Visualization Tools, Optimization Algorithms) applied in the 
frameworks of Energy Efficiency & Emissions management, towards a holistic framework for energy 
efficiency and emissions control, thus materializing the next-generation paradigm for the maritime 
industry. In this context, by capitalizing on available COTS technologies and limited RTD, 
SMARTSHIP’s overall objective is to deliver an ICT & IoT-enabled holistic cloud-based maritime 
performance & monitoring system, for the entire lifecycle of a ship, aimed to optimize energy efficiency, 
emissions reduction, fuel consumption, and at the same time include circular economy concepts in the 
maritime field. 

Work Package 4 outputs the SmartShip Baseline framework: IoT and advanced data analytics, lead by 
ITML (M10-M60). This deliverable is based on the output of T4.1 and T4.2 as well as the architecture 
from WP3 and the requirements of WP2. ITML will design and develop the IoT-based data analytics 
module of SmartShip, which will be the core of the multi-level optimization of the vessels’ operation 
and management in terms of fuel consumption, energy efficiency, emissions, and circular economy 
principles. 
 
This deliverable was developed by the SMARTSHIP Project in order to document the procedures from 
the demonstration which concerns the “IoT applied tools and technologies and data analytics module”. 

The document contains the structure and procedures regarding the specific deliverable, and initially 
provides an overview of the project baseline framework along with its objectives and the relation to the 
work programme.  
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2.  Introduction 
 

2.1 Scope and objectives of the deliverable 

The scope of the deliverable is the design and development of the IoT-based data analytics module of 
SmartShip, which will be the core of the multi-level optimization of the vessels’ operation and 
management in terms of fuel consumption, energy efficiency, emissions and circular economy 
principles. Furthermore, in this deliverable it’s important to identify and report of any market-ready tool 
and technology already applied in the maritime industry, related to IoT-based advanced data analytics. 
 

2.2 Structure of the deliverable 

The document contains the structure and procedures regarding the specific deliverable, and initially 
provides an overview of the project baseline framework along with its objectives and the relation to the 
work programme. 

The deliverable consists of seven main sections: 

First section includes the executive summary of this document. 

Introduction part of this deliverable, stating the scope and the objectives is addressed in the Second 
section. 

Third section focuses on the state of the art in Advanced data analytics and IoT Technologies. This 
section helps the viewer to define the concept of Internet of Things, along with the Advance Data 
Analytics theory. 

Fourth section analyzes the conceptualization of IoT technologies and state of art in Advanced data 
analytics in the Maritime industry. 

Fifth section describing the design and development of Advanced Data analytics module, which 
includes three sub sections along with figures and modelling snapshots. 

Finally, the Conclusion part of this deliverable appears in the Sixth section. References used in this 
deliverable are listed in the Seventh section. 

 

 

2.3 Relation to Other Tasks and Deliverables 

This document references procedures which are described in detail in D3.1 “SmartShip circular 
economy-based functional architecture”, submitted in M36 (March 2022). Subsequently, the parts of 
Design and Development of Advanced Data analytics is based on the inputs from T4.1 and T4.2, as well 
as the architecture from WP3 and the requirements from WP2.  
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3. State of the art in Advanced data analytics and IoT Technologies 

3.1 Internet of Things (IoT) 

 
Today’s industries face the problem of aggregating and analyzing data consumed from multiple 
heterogeneous data sources. Such data sources could be any (Internet of Things) IoT device, from 
Raspberry PIs to sensors on board a moving object. In the maritime domain, things are no different as 
most of the vessels carry AIS transponders and GPS devices. Furthermore, vessels are also equipped 
with sensors attached to their engines and other main functionality components. Taking into account the 
total number of vessels globally, the problem of data aggregation and consumption becomes even harder 
to tackle. 
 
To this end, several works have focused on the domain of data streams aggregation. In order to tackle 
problems posed with centralized approaches, the authors in [1], present a novel resource-aware network-
partitioning algorithm which is able to partition and distribute data based on the load of each node over 
the network and the change of data stream rates. The developed Distributed Stream Management 
Infrastructure (DSMI) supports an SQL-like query language to describe the process of aggregations for 
producing a new aggregated data stream from existing data streams. Similar to [1], authors in [2] present 
a novel stream join model, called join-biclique. Based on this model which treats an entire cluster as a 
bipartite graph, a distributed stream join system is developed, called BiStream. This system supports 
efficient full-history joins, window-based joins, online data aggregation and resource management for 
scaling. On the other hand, Babcock et al. [3] developed algorithms able to determine at what points in 
a query plan, load-shedding should be performed and the amount of load to be shed. The main idea 
behind this approach is when the system resources cannot deal with the amount of data being consumed 
at a given time, system load must be reduced by dropping unnecessary data tuples. Similarly, authors in 
[4] present storage-efficient algorithms for decay functions which determine the relative contribution of 
each data to the aggregate. The contribution is highly related to the time passed from the moment the 
data was generated. 
 
Another approach in stream aggregation and consumption is to treat each IoT device as a microservice. 
Butzin et al. [5] investigate different patterns and aspects in the microservices approach and examine 
how these practices can be integrated in the IoT domain. In the microservice architecture, individual 
distributed interconnected services are designed to work together and structure an application. The 
interoperability of IoT services and the creation of value-added applications could benefit by employing 
the same architectural design. The aspects compared, related to self-containment, monitoring and fault 
handling. Self-containment property focuses on separation of the functionality and enforces isolation 
via independently deployable units. By adopting this property in IoT, several benefits arise such as 
independent evolution of services, easier deployment and better decoupling between services. 
Monitoring is a process of reporting, gathering and storing information. Each service should provide an 
interface about its health status in order to prevent other services to call a broken one. Microservices 
and IoT employ the concept of circuit breaker in conjunction with the load balancer pattern. The circuit 
breaker prevents messages delivered to broken services and enables the load balancer to distribute the 
workload only on "healthy" services. In conclusion, this research work supports those architectural goals 
of microservices and IoT are quite similar and IoT could benefit from aspects used in the microservices 
approach. 
 
Following this direction, [6] presents a vision of applying microservice architecture in an IoT system. 
Several challenges concerning IoT systems have been already addressed and the Internet consists the 
backbone for the IoT. However, existing IoT systems facing several well-known problems including 
interoperability, security flaws, heterogeneity of technologies and protocols used, power limitations etc. 
In this research, "things" are not treated as atomic elements of the system but rather follow the SOA 
approach where IoT is a network of services. An IoT node is a smart object that provides services over 
the network. Thus, the focus is shifted to the level of data and services rather on devices and 
communication. However, the SOA approach is heavyweight and consists of centralized service models. 
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As a solution the microservice pattern is applied to IoT systems where each component is independently 
developed and deployed. Because IoT systems have important differences with cloud-or web-centric 
patterns, the microservice pattern is combined with complementary patterns which are able to solve 
several issues concerning the Internet of Things. These patterns include API Gateway, distribution, 
service discovery, containers and access control. Two case studies are employed, and the results show 
that in order to successfully apply microservices in IoT systems, many trade-offs should be considered 
and open questions to be addressed. 
 

3.2 Advanced Data Analytics 

To analyze and process large volumes of data consumed from multiple sources, researchers’ interest has 
shifted focus towards extracting and discovering knowledge in an automated fashion. With the increase 
of tracking sources, several studies have focused on surveillance, tracking and route monitoring of 
moving objects. The research fields in surveillance include classification and clustering of moving 
objects’ trajectories. 
 
Trajectory classification methods extract different features from the spatiotemporal properties of 
trajectories, such as speed, acceleration and direction change, to use as input for trajectory classifiers. 
As referred in [7], the difference between the classification techniques is focused on the type of 
trajectory features extracted for creating the classification model. Effective trajectory classification 
requires generating a set of features that discriminate against the class. Therefore, the attention in [8] is 
focused on trajectory feature generation. Two assumptions that are taken into consideration is that 
discriminative features are more likely to appear as parts of trajectories (sub-trajectories) and as regions. 
In this work, a feature generation framework called TraClass is presented. The framework generates a 
hierarchy of features by combining two types of clustering: i) region-based which discovers regions of 
trajectories that belong to one class and ii) trajectory-based which discovers sub-trajectories that present 
common moving patterns of each class.  
 
TraClass uses a multi-resolution grid structure, which divides the space into a finite number of cells. 
The cell sizes are reduced until the trajectories inside the grid belong to the same class. Each trajectory 
is segmented into a set of partitions which are grouped using a density-based clustering method similar 
to the DBSCAN algorithm. If the trajectories in a grid cell belong to the same class then it is selected as 
a feature otherwise the trajectories are split by direction change. The grid cells and sub-trajectory 
constitute the features of the classification model and belong to either a region-based or a trajectory-
based cluster. The combination of two clustering methods achieves better classification results in terms 
of accuracy. In [9] a classification method is presented, which computes and analyzes features in both 
spatial and temporal domains. The proposed method consists of three stages and segments the 
trajectories by using two types of grids. In the first stage, the trajectories are partitioned based on their 
space location, and the time duration of the sub-trajectories inside each grid is calculated. In the second 
stage, the trajectories are partitioned based on temporal windows of increasing sizes, and features related 
to average and standard deviation of speed, acceleration, turning angle and traveled distance are 
extracted from the sub-trajectories inside each time window. In the third stage, features from the spatial 
and temporal domain are employed as input for the trajectory classifier. In [10] the Nearest Neighbour 
Trajectory Classification (NNTC) is used for trajectory data. For data enrichment, an initial pre-
processing is performed which adds additional features such as the time of the next position in the 
sequence, the time interval and the distance in space to the next position, speed, direction, acceleration 
and direction change. Then, trajectories are represented as the sequence of these features and assigned 
to the same class as its neighbour (closest trajectory). NNTC predicts the classes based on the label of 
the nearest trajectory. A segmentation and feature extraction method for trajectories which considers 
local and global features is presented in [11]. The proposed method calculates features every two 
consecutive trajectory points and then the trajectories are represented as sequences of each feature. This 
method strives to classify the movement characteristics of different types of dynamic objects and to 
extract possible similarities among the movements. Local features are extracted from sub-trajectories 
with the same characteristics and global features are statistics of the entire trajectory. The vast number 
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of global and local statistical descriptors which can be used as features in the classification process 
present correlations. Thus, the principal component analysis (PCA) is used for selecting the best 
features. A trajectory classification method which is based on shapelet analysis is presented in [12]. The 
method extracts relevant sub-trajectories called movelets, in order to generate local features of each 
trajectory and compares the distance of each sub-trajectory to all trajectories in the dataset. 
 
J’unior et al [13] presented an active learning approach called ANALYTiC, which enables semantic 
annotation on the learning set. The proposed approach computes the speed, the direction variation and 
the traveled distance between the consecutive points of a trajectory, and it calculates the global features 
of minimum, maximum and average values of all point features to be used as the classifier’s features.  
    
Bolbol in [14] presents a framework for classifying the GPS segments into transportation modes (car, 
walk, cycle, underground, train and bus). The proposed framework is based on Support Vector Machines 
(SVMs) classification and extracts features as the average acceleration and average speed of the 
trajectory. SVMs are easily trained and can be applied directly to the data without any prior feature 
extraction process in comparison with other machine learning methods. In the first step, an initial process 
which segments the track is performed and then the data are passed to the SVM learning process. The 
proposed method segments the trajectories in a pre-defined number of sub-trajectories and a fixed-length 
moving window is applied to cover a certain number of consecutive segments in order to clarify different 
transportation modes. A Convolutional Neural Networks (CNN) architecture for trajectory mode 
classification based only on raw GPS trajectories, is presented in [15]. Initially a pool of 
attributes/features (e.g speed, acceleration, direction change, and stop rate) are computed from 
sequential trajectory points. Then, the trajectories are represented by a vector of four dimensions, one 
for each feature. This vector is fed into the CNN to estimate the transportation mode. In order to evaluate 
the performance of the proposed approach, the CNN model was compared with traditional machine 
learning algorithms including K-Nearest Neighborhood (KNN), RBF-based Support Vector Machine 
(SVM) and Decision Trees (DT). Furthermore, authors in [16] propose a supervised learning approach 
for transportation mode classification based on user's GPS logs. In addition to simple velocity and 
acceleration, the method identifies a set of features which are more robust to traffic condition. 
Specifically, for each trajectory are extracted features such as length, maximum speed and acceleration, 
average expectation, and variance of speed, heading change rate, stop rate and velocity change rate. 
Subsequently, these features are used for training a Decision Tree-based model in order to perform 
predictions. 
 
Finally, authors in [17], fused a Genetic Algorithm (GA) with two other algorithms, General Hidden 
Markov Models (GHMM) and Structural Hidden Markov Models (SHMM), for the classification of 
trajectories and evaluated their approach in two different surveillance datasets, MIT car [18] and T15 
[19]. 
    
In the maritime domain several approaches have been studied regarding the field of trajectory 
classification. Initially, studies exploited data originated from the Vessel Monitoring System (VMS) to 
classify fishing activity [20], [21], [22], [23], a satellite-based monitoring system which provides 
location, course and speed of vessels to fisheries authorities at an one-hour time interval. Walker et al. 
[20], [22], presented a Bayesian state-space model to classify VMS data of tuna purse-seiners into three 
different activities, fishing, tracking and cruising. Each state was assumed that it followed an order one 
Markovian process and the prediction of the activity corresponded to the state that had the maximum a 
posteriori probability to occur. Authors in [23] proposed a set of features that are representative of 
trajectories of different fishing vessel types. These features are then used to feed machine learning 
schemes of XGBoost with the aim of distinguishing between nine different fishing vessel types, 
achieving a classification accuracy of 95.42%. 
 
However, after the adoption of the AIS from the International Maritime Organization (IMO) as a 
mandatory means of vessel monitoring which covers a wider range of vessels and has higher 
transmission frequency compared to the VMS, studies focused more on data collected from AIS 
receivers. Mazzarella et al. [24], analyzed the behaviour of fishing vessels by detecting the stops and 
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moves in their trajectory. To this end, they combined two algorithms, namely CB-SMoT [25] and DB-
SMoT [26]. The former identifies the speed variations in a trajectory and the latter identifies the change 
of its direction. As a next step, they identified clusters with the use of the density-based algorithm 
DBSCAN, each cluster indicating a dense area of fishing activity. Another usage of the DBSCAN 
algorithm can be seen in [27] where authors detect through clustering Points of Interest (POI) in the 
vessel trajectories which are then used to extract features that are fed into a classifier. 
 
Souza et al. [28] presented three classification techniques to determine whether specific types of fishing 
vessels are engaged in fishing activity or not. The analysis focused on three types of fishing vessels, 
each one using a different type of equipment for fishing: i) trawlers, ii) longliners and iii) purse-seiners. 
Based on their trajectory behaviour when engaged in fishing, authors determined that in each vessel 
type, a different classifier is suitable and therefore used three different classification models. Each 
classification model identifies parts in the trajectory that correspond to either fishing activity or not 
(when the vessel is not fishing, it is either moving towards the fishing area or from the fishing area). The 
disadvantages of their proposed methodology are that each classifier performs a binary classification 
task and that the gear type is not always given by the AIS, making it harder to choose a proper classifier 
in a real-world application setting. Finally, Jiang et al. [29] presented classifiers which use neural 
networks and autoencoders achieving a high-accuracy classification performance. Their methodology 
is similar to that of [28], in the sense that they perform binary classification to detect when a specific 
type of fishing vessel is engaged in fishing activity. Their methodology was evaluated in longline fishing 
vessels, a fishing type that uses long nets and hooks attached to them to capture fish and compared with 
other classifiers such as Random Forests and SVMs. 
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4. IoT based data analytics tools and technologies applied in the Maritime 
Industry 

4.1 Introduction 

4.1.1 Big Data in the Maritime industry today 
 
According to the definition of big data1, it is the 
name given to the large volume of structured and 
unstructured data produced in our personal and 
professional lives. It can be defined by its variety, 
velocity, and volume with which it is generated. Big 
data analysis is exceptionally advantageous since it 
allows businesses to expose hidden patterns, 
unknown correlations, uncertainties, market trends, 
and other meaningful information. Big data offers 
great capabilities to optimize operations to chime 
with ship calls, renew port assets, and ensure 
optimum cyber-security.  
 
Big data has the possibility to transform the 
Maritime Industry. Through applications and 
insights, big data is deploying new opportunities to 
drive innovation and deliver tangible operational 
efficiencies across the shipping world. However, 
raw data is not enough, analysis of this data will provide information that will allow the Maritime 
Industry to move forward. Thus, applying big data offers huge potential in Maritime Industry, and an 
extensive review follows analyzing the benefits, challenges, and initiatives. 
 

4.2 Current and potential application areas 

 
Nevertheless, organizations leverage diverse data pools to drive value, and big data has significantly 
benefited industries such as finance, media, telecom, and healthcare, its uptake by the maritime industry 
has been slow. According to a report by Ericsson2, the maritime industry lags behind other transport 
industries in terms of its use of information and communications technology.  
 
There are numerous benefits that the industry can derive from the use of big data. The industry generates 
roughly 100-120 million data points daily from different sources, such as ports and vessel movements. 
Companies can analyze these data points to identify efficiencies such as faster routes or ideal ports. 
 
Big data remains untapped in the shipping industry. Therefore, there are huge opportunities for 
innovation, usage, optimal performance, and better leveraging assets. 
 
The following table presents a snapshot of application areas for big data in the maritime industry: 
  

                                                      
1 https://www.investopedia.com/terms/b/big-data.asp  
2 https://www.ericsson.com/en/press-releases/2015/1/maritime-ict-cloud-enables-ships-to-join-the-  networked-society  

      

SEQ Figure: Big Data 

Big 
Data 

Volume 

Velocity Variety 

https://www.investopedia.com/terms/b/big-data.asp
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Table 1. Application areas for Big Data in the Maritime industry 

ROLE FUNCTION EXAMPLE OF BIG DATA APPLICATION 

Ship Operator 

Operator 
● Energy saving operation 
● Safe operation 
● Schedule management  

Fleet planning 
● Fleet allocation 
● Service planning 
● Chartering 

Ship Owner 
Technical Management 

● Safe operation 
● Condition monitoring & maintenance 
● Environmental regulation compliance 
● Hull and propeller cleaning 
● Retrofit and modification 

New building ● Design optimization 
 
 
The following are some key application areas for big data in the maritime industry: 
 
Table 2. Key Application Areas for Big Data in Maritime industry 

AREA DESCRIPTION 

Chartering 

The most crucial thing for Charterers is to get the proper ship for cargo at the most 

cost-effective price. Big data analytics could provide charters with available, 

precise, and useful information to enhance the decision-making process. Charters 

can incorporate Automatic Identification Information (AIS), estimated time of 

arrival/departure (ETA/ETD), vessels details, position reports, and market 

information into an exchange portal to find all available alternatives, as well as 

freight forecast i.e., BDI.   

Operations 

Speed is all about fuel consumption. Operating a vessel at its optimum speed is 

tough as it changes over time due to various factors such as engine and 

maintenance. Big data analytics could assist ship owners in determining the ideal 

speed for fuel consumption, considering factors such as bunker expenses, freight 

rates, and schedules. Fuel consumption information/data can also be provided for 

cost-benefits analysis of vessel’s maintenance.  

Voyage Operations 

Voyage managers, terminal operators, and port agents must know the estimated 

time of arrival (ETA) and cargo information. There is the possibility of tracking 

the vessel using dashboards instead of relying on notes, emails, and phone calls. 

In this way, there is significant information on practical decisions about terminal 

and berth allocation, cargo handling, and route tracking.     

Vetting 

Another important matter is the vessel acceptance by Characters. Ship owners 

must take care of their ships in order their fleet to pass the selection criteria. 

Vetting includes receiving feedback from various entities (Port Authorities, 

terminals, inspectors, etc.). In this case, data analytics could assist charterers, and 
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vetting firms analyze the different sources of information, navigation, and safety 

management.  

4.3 The future of big data in the Maritime Industry 

The following table presents the key trends in the use of big data in the maritime industry: 
 
Table 3. Key trends in the use of Big Data in Maritime industry 

TREND DESCRIPTION 

Technology capabilities are 
developed through 

Partnerships 

Big data analytics are implemented through collaboration between shipping 

companies, technology suppliers, institutions, and universities. Collaboration 

can unlock synergies to generate direct value for customers/end users creating a 

unique ecosystem.  

Through big data could be 
achieved the bunker cost 

reduction 

One of the most crucial matters in the Maritime industry is fuel 

consumption/prices. Ship Owners and Operators are trying to eliminate their 

bunker costs. The use of big data through maritime software, there will be 

performance monitoring and optimization solution for fuel energy reasons. 

Maritime companies are 
willing to set up internal 

infrastructure for big data 
execution 

Maritime companies are developing internal platforms and entities to ensure 

efficiency, forecasting, and data security. 

Big data entry in shipping is 
supported by funding 

There are many types of funding (i.e., EU H2020 Calls, tenders, EMFF 

programs) in order to boost the use of big data in different applications of 

shipping. 

 
 

4.4 Challenges for Maritime Industry of Big Data Analytics 

According to the “Challenges and Opportunities of Big Data Analytics for Upcoming Regulations and 
Future Transformation of the Shipping Industry”3, a research article of the maritime industry, it 
generates an enormous amount of data from multiple sources and in different formats, including traffic, 
cargo, weather, and machinery data. The volume and variety of data continue to increase day by day 
due to the application of sensor technology in the industry. Big data analytics are new to the maritime 
industry and address many issues, such as adaptability and integration. 
 
There are a lot of challenges that the maritime industry faces in terms of big data; some of them are 
described below. 
 

                                                      
3Zaman, I., Pazouki, K., Norman, R., Younessi, S. and Coleman, S., 2017. Challenges and opportunities of big data analytics for upcoming 
regulations and future transformation of the shipping industry. Procedia engineering, 194, pp.537-544.  DOI:10.1016/j.proeng.2017.08.182 

https://www.sciencedirect.com/science/article/pii/S1877705817333386#bibl0005
https://www.sciencedirect.com/science/article/pii/S1877705817333386#bibl0005
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● Data Transfer: Ships typically have a very large number of sensors onboard. A major cause of 
uncertainty comes from data transfer from those sensors. Every sensor requires a specific 
communication bandwidth, so it is important to have appropriate data communication for the 
individual sensor to transmit the information to the database. The data transfer speed may be 
accelerated with the help of high-tech communication systems. 

 
● Cybersecurity: This is a burning issue for any IT system. The data network's safety, security, 

and management will become vital for future shipping. This will need to be protected from 
external interventions such as piracy, viruses, or terrorist attacks. Cyber security will be the key 
issue for any naval system to prevent corruption in maritime security. A cyber-attack on the 
sensor network would interrupt the overall system and could be responsible for significant losses 
in the business. 

 
● Data Quality: Low-quality data would potentially lead to errors in interpretation. The database 

will not be able to keep track of all new entries. Therefore, ideally, the data should be error free. 
Data quality will be a big concern for the industry. 

 
● Data Integration: The current data collection systems in the marine industry are inconsistent 

and often unreliable. Data from different sources will need to be integrated for analysis. For 
example, fuel consumption, GPS data, and engine data would need to be integrated to monitor 
the vessel's performance. 

 
● Data Ownership: Ownership allows access to the data to read, create, update, and delete 

database entries and allows traceability through the data lifecycle. The shipping industry is 
based on a complex supply chain; stakeholders include ship owners, operators, customers, port 
authorities, and Classification Societies. Ship operators will have access to the full set of 
machine data, and Classification Societies will get access to data for safety or classification 
purposes. Port state authorities will require access to cargo and personnel information. 
Ownership of data is crucial to the shipping industry, and it will become more challenging for 
ship operators to distribute the data ownership and the level of authority in the future. 

 
● Data Protection: Data will move between individual parties because of different interests. 

Sensitive data will probably need to be shared externally, prioritizing security and privacy for 
data protection and maintaining data quality. 

 
● Adoption and Standard Management: The industry has to look forward to adopting big data 

analytics to understand the hidden features and benefits of using the available data. The shipping 
industry will need to create an environment and awareness across the stakeholders to adopt new 
technologies, tools, and processes and regulate standards. 

 
● Human factors and Practice: Increasing the connectivity between the crew and shore staff in 

shipping companies will become more important. The data transfer between a ship and shore 
and from shore to ship will increase to drive toward optimal operational efficiency and safety. 
The ship and shore personnel will be required to undertake additional training to provide support 
for this. 

 
● Business Model: The shipping industry is moving towards significant technological change. 

This will lead to a change in the business model of the industry. New business models will 
enable the development of a transparent industry associated with transferring knowledge and 
data-driven systems. 
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4.5 Internet of Things Technologies in Maritime Sector 

The suite of technologies enabling the Internet of Things promises to turn almost any object into a source 
of information about that object. Sensor technology allows objects to have the "perception"; RFID 
technology makes them "speak"; machine-to-machine (M2M) lets them “exchange”; finally, IoT allows 
all objects in the world to interconnect. IoT solutions thus enable businesses to analyse data generated 
by sensors on physical objects in a world of intelligent, connected devices. Therefore, IoT connects the 
digital and physical worlds by collecting, measuring, and analysing data to predict and automate 
business processes. IoT, can also help accelerate the transition to a circular economy in the industry. 
 
The convergence of IoT, cloud, and big data, create new opportunities for analytics towards a completely 
new paradigm of big data analytics. This creates a new way to differentiate products and services and a 
new source of value that can be managed in its own right. Realizing the IoT’s full potential motivates a 
framework that captures the series and sequence of activities by which organizations create value from 
information: the Information Value Loop. 
 
 

 
Figure 1. The Value Loop 

 
As the next big leap in mobile and wireless communications, 5G is expected to open numerous 
possibilities in maritime communication. 5G could potentially optimise the routing undertaken by 
maritime vessels, resulting in less distance travelled and lowered emissions. 
 
Real-life applications include the introduction of smart drones for real-time monitoring, ship-shore 
communication for vessel traffic management, and just-in-time operations. Furthermore, maritime 
5G will facilitate the adoption of autonomous vessels with low latency connectivity for remote 
operation and hasten Internet-of-Things sensors during search-and-rescue for real-time 
communications and accurate positioning. 
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Industrial IoT (IIoT) can realize an immediate return on investment (ROI). Sensors on the ships work 
together with sensors at the docks to monitor the volume of goods and unloading speeds. The data 
obtained from the sensors are fed through sophisticated applications which utilize big data analytics to 
determine a realistic ETA. Intelligent IoT Messaging technology provides the ability for anyone to query 
the ETA status of the ship. 
 
Cyber-Physical Systems (CPS). These systems are combinations of several major innovations in digital 
technology poised to transform the industry. The technologies include cloud computing, the Internet of 
Things (IoT), Blockchain, sophisticated sensors, data capture and analytics, advanced robotics, and 
artificial intelligence. 
 
The core vision is to enable seamless information exchange to streamline transport operations, increase 
safety, improve competitiveness, and reduce the environmental impact.   
 
 

 
Figure 2. Integrated operational/information exchange Platform/Portal 

 
Integrated operational/information exchange Platform/Portal/Marketplace intends to improve the 
overall performance of multimodal transport to create a seamless and secure information system. This 
will be done by interconnecting mobile and wireless communications developments, tracking and 
tracing, fleet and freight management, and Internet-based technologies. Integrated platforms aim to link 
all actors together to allow cooperation, collaboration, and information sharing from the point of 
dispatch to the point of arrival.  
 
Another application towards IoT framework enhancement, the Fleet Data IoT platform, draws on 
different sources for data, including onboard sensors, the ship’s voyage data recorder (VDR), or the 
Integrated Automation System. Data is pre-processed and transferred ashore by satellite connection. 
Users access a secure online dashboard that is virtually connected via Application Program Interfaces 
(APIs) to the analytic, monitoring, and management tools available through the IoT. 
 
The platform will also look at integrating edge computing, real-time analytics, artificial intelligence, 
hyper-precise data, and blockchain. An example application is using sensors incorporated on and in quay 
walls, dolphins, waterways roads, and traffic signs to generate continuous measurement data and 
communicate with autonomous systems, laying a path for facilitating autonomous shipping, a target the 
port aims to meet by 2025. The Port of Rotterdam integrates IoT using sensors (e.g., environmental data) 
to reduce berthing times by one hour (saving of ~USD $80,000)4. Another area of IoT-enabled 
technology, Rotterdam’s port invests in is a barge-tracking system known as Port Insight.  

                                                      
4 https://maritimefairtrade.org/rotterdam-uses-iot-to-save-1-hour-of-berthing-time/  

https://maritimefairtrade.org/rotterdam-uses-iot-to-save-1-hour-of-berthing-time/
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4.6 Conclusion- Big data analytics in Maritime Sector 

Big data is considered one of the top initiatives to transform the shipping industry. According to the 
Global Marine Technology Trends 20305 report published in November 2015, big data analytics will be 
one of the top 18 transformational technologies being used by the sub-sectors (commercial shipping, 
naval, and ocean) in the marine industry. 
 
The maritime industry is a complex system that requires a rapid adaptation to changing conditions and 
in which the decision-making process needs to consider many factors.  
 
Big Data analytics tools make it possible to analyze a large quantity of data to gain insight that supports 
decision-making. However, there are many challenges that this industry must examine, such as cyber 
security threats, misreporting of data, and lack of cross-enterprise technology implementation. 
 
 
5. Design and Development of Advanced Data analytics module 
 

5.1 Introduction 

 
Within the SmartShip project, we develop an IoT-based data analytics module. This will be the core of 
the multi-level optimization of the vessels’ operation and management in terms of fuel consumption, 
energy efficiency, emissions, and circular economy principles. 
 
SmartShip ecosystem comprises three components. From a bottom-up perspective, these components 
are: 
 

1. Data Sourcing (IoT) 
2. SmartShip Core system 
3. Users Applications 

 
Data Sourcing (IoT) definition 
 
This component of the SmartShip system is considering tools, communication protocols and network 
topology for data retrieving, data pre-processing at the edge and finally transferring of information to 
SmartShip core for further processing and analysis. 
 
In addition, this section refers to the Task 4.3 of SmartShip, which will be responsible for the actual 
design and development of the IoT-based data analytics module of SmartShip. This module will be the 
core of the multi-level optimization of the vessels’ operation and management in terms of fuel 
consumption, energy efficiency, emissions and circular economy principles. 
 
SmartShip Core system 
 
The SmartShip core is the heart of the whole ecosystem. Data is processed, analyzed, and visualized to 
support decision-making for critical maritime operational procedures defined in the project’s Use cases.  
 
User Applications 
 

                                                      
5  https://www.researchgate.net/publication/297195898_Global_marine_technology_trends_2030 

https://www.researchgate.net/publication/297195898_Global_marine_technology_trends_2030
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This layer identifies how the meaningful information as product of data processing and analysis is 
consumed from users either ashore or on board. In this component of the system the user consumes 
information as represented in SmartShip core, reach decisions for critical tasks (refer to use cases) and 
configure management of the fleet in an optimized manner in terms of energy efficiency and emission 
control. This layer also facilitates active interaction between shore and vessel where information is 
returned to the source (vessel) as valuable feedback for a sustainable and green operation. In this layer 
is where SmartShip architecture realizes circular economy principals.  
 
 

5.2 SmartShip Core system Description 

SmartShip core system comprises four tiers. Data processed from the source and analyzed to be 
transformed into meaningful information for supporting users' decision making. 
 

 
Figure 3. SmartShip Core Tiers 

 
5.2.1 Tier 1. Data processing 

Data processing consists of four layers interlinked sequentially. It begins with the data access layer with 
build-in database views and connectors querying data from a distributed network of data sources. The 
data quality layer is followed and triggered in two instances (vessel and office sides). The vessel side 
includes data pre-processing and compression before delivery to shore. The office side is a second step 
validity, accuracy, and consistency checking once data batches are transferred to shore for further 
processing. The third layer is related to the data homogenization or conceptual representation layer. This 
layer deals with the transparent manipulation of data provided by heterogeneous sources and consists of 
two sub-layers naming the data heterogeneity manipulation and the data uniformity. The homogeneity 
of multi-source data using ontologies will assist in achieving the correlation of different measurements 
for the same value from other devices or sources across the fleet. For example, wind speed is streamed 
from a different acquisition system in vessel A (i.e., Laros) and another third-party provider in Vessel 
B (ENIRAM). SmartShip is homogenizing these data streams of the same domain acquired from 
independent parties hiding semantic heterogeneity and enabling common interpretation of data values. 
Data uniformity sub-layer triggers an auto unit conversion of data pooled from different locales to single 
measures (e.g., Vessel A gives M/E power in Kw and Vessel B in BHP). The final layer deals with data 
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integration. This layer associates and integrates the same information from different sources to escalate 
machine-accessible low-level data to higher-level abstractions suitable for decision making. For 
example, Vessel A streams fuel consumption for the main engine from a high-frequency flow-meter, 
telegraphs in daily intervals, and lab analysis after bunkering. SmartShip, through operator-defined 
rules, combines and synchronizes values to translate data into meaningful information. 
 

5.2.2 Tier 2. Data Insights and Data analytics 

This tier of the SmartShip core system deals with the integrated SmartShip advanced data analytics 
module as a build-in system function. Tier 1 feeds the SmartShip analytics module, where data is 
presented in two manners: 

1. Data insights are the situation awareness data representation field. The user quickly grasps the 
big picture over large data volumes, observes in real-time, uncovers hidden patterns in the 
underlying data, and gains knowledge. Data insights could be consumed through the user 
application interface in nearly real-time close to the edge of the source (fog layer); thus, user 
onboard will instantly reflect insights to a fast response and decision. Data insights are mostly 
consumed following the data integration layer (refer to tier 1). 

 
2. Data analytics is the operator-defined algorithmic analysis of fused data. Data analytics are 

performed ashore (office environment). Analytics allow “hindsight” to reflect and learn from 
past data by statistical processing past observations (trend analysis, etc.) and detecting hidden 
correlations among seemingly unrelated data. This is where deep knowledge of various aspects 
of vessels’ lifecycle is achieved (LCA knowledge base). Analytics gives “insight” interpreting 
data and responding efficiently to the present by providing KPI's real-time monitoring 
(operational efficiency, safety performance….), enabling vessel’s benchmarking against 
theoretical curves. Specifications, tests, sea trials, and competitors or sisters’ vessels trigger 
timely anomaly detection / alerting for abnormal behaviour and deviation from predefined 
thresholds. Finally, Analytics offers “foresight” predicting and getting ready for future events 
by activating what-if scenarios (forecasting based on current observations) and performing risk 
assessment (multi-factor). Apart from user-defined (based on subject expert judgement) 
algorithms data analytics module enables machine learning AI models for forecasting. 

 

5.3 Smartship Data sourcing (IoT) and Advanced Data Analytics modules modelling, 
configuration and deployment.  

In this section, a demonstration of the configuration of SmartShip Advanced Data analysis module will 
be presented based on tier 1 and tier 2 of SMARSHIP architecture. 
 
5.3.1 Release Plan 

 
The development of the SMARTSHIP advanced data analysis module followed agile/adaptive 
methodology with an incremental release of two versions. The first iteration was completed in M36 with 
a first design/version of the module and the second iteration was concluded in M48. The final release is 
capitalising on the existing DANAOS infrastructure for data sourcing and processing (DANAOS fleet 
performance system and DANAOS IoT network on-board) constituting a valuable increment to the 
system by advancing the functionalities and thus brining benefit to the existing design of vessel 
performance monitoring.  
 
The implementation team consisting of project researchers (seconded staff) was flexible, self-managed, 
multi-disciplinary in skills and background and dedicated to the project. The team included a Product 
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Owner who played the role of the central interface between the users and their requirements as depicted 
and elicited in D2.1 (WP2) while set priorities in the release backlog prioritising user stories in order of 
importance. The team supported by "servant leaders/team managers" (Servant Leaders), are consulted 
the implementation team, coaching and managing the team whilst removed obstacles where raised 
aiming at the enhancement of team productivity. 
 
5.3.2 Data Sources 

 
On-board IoT  
 
The data sourcing is mainly referring to datasets streamed from vessel data points bundled together in 
an IoT network on-board. The IoT network along with the main datasets collected from the vessel is 
thoroughly described in D3.1, section 2.2. In the diagram below is displayed a high-level depiction of 
the IoT network configured on-board the reference DANAOS vessel that was utilised for the training 
and the deployment of the SMARTSHIP advanced data analytics module. 
 

 
Figure 4. On board sensor suite internal topology & architecture 

    
 
 
Data acquisition was also supported and enriched by external databases and services.   
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Weather API 
        
The weather service API constitutes an endpoint to retrieve the weather state and more 
specifically the sea state for a specific time and location. The weather is initially acquired from 
National Oceanic and Atmospheric Administration (NOOA), and after appropriately processing is 
stored in an SQL server in 3-hour intervals. The weather grid has a granularity of 0.5 degrees. 

Hindcasts are available up to 2019-09–09. 

● The URI can be found at: https://195.97.37.253:5007/weatherService/latest/lat/lon 
● The latest parameter can be replaced with a specific timestamp (e.g: 2022-11-16 

09:00:00). 
● Lat, Lon parameters are referring to corresponding latitude and longitude values in 

decimal degrees. 

Snapshot of the stored data as well as the acquired weather features, via the API, in json format 
is depicted below: 

        

   

  

 

   

 

 

     

     

  

Figure 6: Database snapshot & detailed 

https://www.noaa.gov/
https://www.noaa.gov/
https://www.noaa.gov/
https://192.168.201.25:5007/weatherService/latest/lat/lon


 

Document ID: WP4 / D4.1   
 

 

23 
 

     

 

The forecasting values for a particular time and location correspond to the closest point of the weather 
grid, as depicted in the picture below, as well as the closest time in the three-hour interval. We also 
attaching in Appendix I a code block that represents the implementation of the API interface that is 
used to acquire the aforementioned weather features.  

    

 
 
 
 
Offline Model Training data storage  
To store data for the training of the developed Artificial Intelligence and Deep Learning models, the 
PostGIS6 database is used. PostGIS is a POSTGRESQL database extension that provides support for 
geographic objects such as linestrings and points and allows faster query execution and indexing for 
spatial operations. Therefore, trajectory data from the AIS are directly stored to a PostGIS database and 
queried from the trajectory classification module either on run-time for real-time monitoring or offline 
for the training of the developed methodologies. 
 
5.3.3 Condition-based Maintenance Use Case: Application of Voyage fuel consumption and 

emission monitoring  

 
Ιn the context of SMARTSHIP project we employed a Big Data Analytics - multipurpose - toolkit 
adapted to the needs of the maritime sector. The proposed framework incorporates a variety of state-of-
the-art streaming tools for real-time analysis of vessel data as well as tools for continuous 
integration/deployment (CI/CD) of ML/DL models regarding operational optimization, causal analysis 
and event recognition. By utilising DANAOS existing in-house infrastructure concerning Edge-
Headquarter (EDGE-HQ) communication between the vessel and the office, we can incorporate the 
aforementioned pipeline in a broader data acquisition network in order to aggregate, synchronise and 
process data coming from the vessel in real-time. The resulting platform constitutes a prototype version 
of a simulation framework, enabling sensing and control actuation on the vessel that aims to assist 
shipowners to achieve efficiency in fleet management with tangible benefits in terms of emission 
reduction, environmental compliance and protection of crew safety onboard. 
 
The available resources and necessary requirements in terms of data storing, provisioning and 
processing were defined in detail by operating an existing Living Lab (PANAMAX Container vessel) 
as a testbed to realise and validate one of the most prominent use cases for operational optimization and 
                                                      
6 https://postgis.net/ 

  

 

 

 

 

 

 
 

Figure 6: Requested & Forecasting coordinates from NOOA 

https://postgis.net/
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emission control, namely, Fuel Oil Consumption approximation.  
 
The main building blocks of the proposed BDA framework are described in the following subsections. 

Data Analytics Suite: Data Processing – Causal Analysis – Pattern Recognition  

Monitoring of the vessel will be performed via the Fleet Performance Monitoring System developed by 
Danaos acquiring real time measurements concerning the operational state of the vessel. These 
measurements will be utilised accordingly in order to assess the environmental footprint of the vessel 
via  SOTA data driven predictive schemes for FOC approximation. User defined dashboards and GUIs 
will offer a holistic insightful representation though tailor made statistical analysis algorithms of the 
broader range of operational features (e.g. Speed (kn), Power absorbed by the ship propulsion system 
(kW), Rounds Per Minute of the main Engine (RPM), etc). 

 

Figure 7. Time Series analysis snapshot 

  

Data coming from on-board sensor instalments concern different compartments of the vessel (Bridge, 
Engine rooms, Deck) and consists of approximately  500 features. However,  
FOC is highly impacted by the total resistance of the vessel as it moves forward, so this hydrodynamic 
force opposing the movement of the ship along its longitudinal axis, which is known as total resistance, 
is the most critical feature to estimate in order to correctly predict FOC. 
 
Based on the above, through a streamlined Feature Selection we create a subset of the original set of 
~500 features that consists of features which heavily affect total resistance, such as: 

● Features that correspond to the frictional resistance and can be utilised in the context of a FOC 
estimation scheme like Speed Through Water (STW), Draft and Displacement.    

● Features that describe the wave resistance components (Wave height/Direction, Wave Period, 
Swell Wave Height/Direction, Swell Period). 

● Features that model the air resistance component (Wind Speed/Direction, Combined Wind 
Wave Height/Direction, Current Speed/Direction). 

 
In order to further reduce the dimensionality of our dataset, we conduct PCA (Principal Component 
Analysis) to determine the principal components (expressed as appropriate linear combinations of the 
initial set of features), that can model the dataset in its entirety, in terms of explainable variance, in the 
best way possible. As depicted in the following graph (Fig. 3), the variance entailed in the dataset can 
be attributed, as a whole, to the first 10 components extracted from PCA. 
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Figure 8. Dimensional reduction via PCA 

 
 
In the following we demonstrate the applicability of a consolidated approach that combines Random 
Forest and Spearman Correlation to extract the most important and independent features to estimate 
FOC. By applying this algorithm and taking into account the PCA presented above, we conclude with 
the most important independent features to be exploited in the next sections in order to approximate 
FOC via data driven methods. 
 
In Table 1 we depict the experimental results from conducting multiple regression analysis utilising the 
aforementioned algorithm. Detailed description of the features and their abbreviation as well as their 
measurement unit is also presented. 
 
     
    
 

Table 4. Feature ranking utilising RF algorithm. 

 
 
 
Data Cleaning 
Raw data, collected from the sensors of the vessel, are in time-series (minutely) form and tend to be 
"noisy" (high variance, high standard deviation from the mean) and in some cases even erroneous. In 
order to remove noise, Kaklis et al. (2022b) employ a fit & filter technique that effectively "cleans" the 
data, but at the same time keeps the bulk of information needed for training robust predictive models. 
The raw vessel's speed and corresponding FOC collected from the sensors versus quasi steady filtered 
data utilising the algorithm from (Kaklis et al. 2022b) is depicted in Figure 9. 
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An alternative method for removing noise from the dataset is to apply the DBSCAN (Density-Based 
Spatial Clustering of Applications with Noise) clustering algorithm. DBSCAN is an unsupervised 
machine learning technique used to identify clusters of varying shape in a data set (Ester et al. 1996). It 
can identify clusters in large spatial datasets by looking at the local density of the data points. Its main 
advantage is its robustness against outliers and noise, which are removed from the clustering scheme.  

 
Figure 10. “Cleansed” version of STW vs FOC with DBSCAN 

 
 

DBSCAN can work without an expected number of clusters (such is the case with the popular K-Means 
clustering algorithm), and requires two parameters: epsilon and minPoints to define dense clusters of 
arbitrary shape. Epsilon is the radius of the circle to be created around each data point to check the 
density and minPoints is the minimum number of data points required inside that circle for that data 
point to be classified as a cluster.  
Figure 6 depicts the resulting clusters and corresponds to the points that remain after removing noise. 
What is even more important, when comparing the plots in Figures 4 (right) and 5 is that the DBSCAN 
based noise removal method is in agreement with the denoising procedure demonstrated in (Kaklis et 
al. 2022b). More specifically, if we apply the Kolmogorov-Smirnov (KS) test to the distributions of the 
two "cleaned" versions of the data, we validate that they are following the same pattern. KS is a non-
parametric test (normality is not a prerequisite) that evaluates the maximum absolute difference between 
the cumulative distributions of the two groups as follows: 

Figure 9. Measured STW vs FOC for a timespan 
of one year. 
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                   (2) 
 
where ,   are the two cumulative distribution functions and x are the values of the underlying 
variable (here FOC). 
We can visualise the value of the test statistic, by plotting the two cumulative distribution functions and 
the value of the test statistic as well as their histogram (Figure 11). 
 
 
 
 
 
 
 
 
 
 

Figure 11. Histogram and KS-Test of the FOC values extracted after applying the Custom de-noising 
algorithm and DBSCAN 

Model Integration/Deployment 

The immediate results from the thorough analysis conducted (time series analysis, data cleansing, event 
recognition, feature selection) in the initial processing layer, are consumed by another building block of 
the envisaged framework, the Knowledge Hub. The Knowledge Hub (KH) incorporates a variety of 
multi-disciplinary approaches regarding data provision, re-usability and curation as well as state of the 
art frameworks for model versioning and deployment. It constitutes a holistic approach that aims to 
create an adaptive versatile observatory for the shipping industry that comprises structured 
methodologies for inter-connecting each use case with the appropriate data, processing algorithms and 
simulation models. All these are joined together adequately, facilitating towards the decarbonization of 
the maritime sector. Figure 2 illustrates a multi-modal streamlined procedure, stored in KH, adapted to 
the task of FOC estimation. 

The Knowledge Hub aims to largely simplify and standardise the way the various tools and services 
provided by the DT’s ecosystem are operating and communicating with each other, following the 
standards of an ICT (Information Communication Technology) framework. The general streamlined 
procedure is based on some functional and non-functional characteristics: 

● Data Processing 
● Model Configuration 
● Model Employment/Deployment 
● Decision Support System 

 
Data processing focuses on determining the most important features, spending the use case (here  FOC 
estimation), and data curation accounts for removing the bias (outliers, faulty measurements) from the 
bulk of data collected in real time from IoT instalments, as already discussed in 5.3.1. As a post-
processing step the calculation of correlation between the most important features results in the selection 
of an ideal feature set that combines importance and independence. The resulting feature set is utilised 
accordingly in the training process of a data driven FOC estimation model.  
 
In the figure below, we depict the general standardised, streamlined procedure adapted to the needs of 
a specific use case by selecting the appropriate algorithms and models (shown on the side of each 
customised flow) and applying them into practice. 
 

  

 

 

 

 

 

 

 

 

 



 

Document ID: WP4 / D4.1   
 

 

28 
 

 
Figure 12. The streamline procedure adapted for the FOC estimation use case. 

 

Furthermore, through a versatile Models Library and Execution Engine incorporating latest 
technological advancements regarding CI/CD of models (Apache MlFlow, Apache Airflow), 
Knowledge Hub will be responsible for the appropriate versioning, configuration (framework selection, 
CPU/GPU optimization, scalability, etc) and deployment (restAPI) of tailor-made mitigation strategies 
addressing the ultimate goal.  

 Conclusively, the proposed framework consists of the following components: 

● IoT backbone suite - Data acquisition layer 
● Knowledge Hub - Processing - Orchestration - Computing - Deployment layer 
● Main GUI - Visualization layer 
● Edge Computing - Sensing & Control actuation layer - Requirements & Refinements 

elicitation  
 

A high-level visualisation of the streamlined procedure demonstrated in previous paragraphs is depicted 
in Figure 13, and comprises several steps from data collection and filtering to model building, 
evaluation, selection and deployment as well as the inter-linkage with a DSS described thoroughly in 
WP5 

Data is continuously harvested from different sources (AIS, Sensors, Noon Reports, Weather Service 
API's) via a state-of-the-art scheduling framework Apache Airflow. The pipeline harvests more than 
100gb of data on a monthly basis, corresponding to routes of different vessels, which are described by 
the aforementioned variables. This framework is utilised with the aim to build a fault-tolerant, modular, 
and multi-purpose big data tool for the maritime industry that is able to harvest data from different 
sources and perform tasks such as Event Recognition, Causal Analysis, Forecasting, and Incremental 
Training. In the first steps, the framework integrates streaming algorithms, in Apache Kafka and Spark, 
that optimise data collection, processing, and storing. More specifically, the batch streaming process is 
handled by Kafka Cluster through a centralised distributed messaging system, which allows to balance 
the load of harvesting data streams in real-time from AIS and on-board monitoring systems. In 
continuance, the data are processed by exploiting the parallelization capabilities of Apache Spark and 
are eventually stored in a centralised cloud-based platform. The cleansed version of the data is consumed 
by a variety of data-driven models that are trained on an ideal feature set for the specified task (e.g FOC 
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estimation), which has been extracted in the previous step. After training is complete, each model's 
artefacts (hyper-parameters, training error, evaluation error, convergence plots, size of dataset) are 
automatically logged in a web-based micro-service (MLFlow) to be easily accessible and comparable in 
order to query the most accurate model in terms of validation error. The selected model is wrapped as a 
web API service and is queried for inference in real-time from external applications, vendors and/or 
stakeholders. After selecting the appropriate FOC prediction model, new data streams (i.e., from sensors, 
AIS) that are pushed to a Kafka topic on a weekly basis, are fetched once a week from the topic and 
used to update the model. The architecture of this pipeline gives us the advantage to leverage the 
streaming capabilities of Kafka, the task automation power of Airflow, and the logging features of 
MLFlow — all structured and orchestrated by a set of Docker containers. 

 

Figure 13. The streamlined procedure from data collection to model deployment. 

 

5.3.4 Application of Smartship Offline training model for trajectories labeling and real-time 

vessel activity classification based on AIS data.    

For the training of the model, representative trajectories of mobility patterns were required to be used 
as the ground truth. Thus, already labelled trajectories from historical AIS data, which were annotated 
as “anchored”, “moored”, “underway”, and “fishing”, were used. These trajectories were converted into 
images, which in turn were used as training instances of the deep learning model. For the 
implementation, the Keras7 library with a TensorFlow8 backend was used, which consisted of not only 
APIs to create neural networks, but pre-trained CNN models as well. These pre-trained models were 
employed and fine-tuned to classify images of mobility patterns The Python programming language was 
used for the training and experimentation. 

There are several frameworks for distributed stream processing such as Apache Spark9, Apache Flink10, 
and Kafka streams11, out of which only Apache Spark has support for the Python programming 

                                                      
7 https://keras.io/ 
8 https://www.tensorflow.org/ 
9 https://spark.apache.org/streaming/ 
10 https://flink.apache.org/ 
11 https://kafka.apache.org/documentation/streams/ 

https://keras.io/
https://www.tensorflow.org/
https://spark.apache.org/streaming/
https://flink.apache.org/
https://kafka.apache.org/documentation/streams/
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language, which was needed for the implementation of the neural networks and the creation of the 
images. Apache Spark is not preferred since it performs micro-batching over streams of events, and a 
system is needed that can handle event-processing in real time. Therefore, to balance event-processing 
with low latency and high throughput, the Apache Kafka12 framework was used in this phase, a 
distributed publish-subscribe and message-exchange platform similar to a message queue able to process 
streams of events as they occur. Three major concepts exist in the Apache Kafka ecosystem, namely 
topics, producers, and consumers. A Kafka topic is a category/feed name to which messages are stored 
and published. A producer is an application that continuously publishes or stores messages in a topic. A 
consumer is an application that is subscribed to a topic and continuously reads or consumes messages. 
A Kafka topic can be divided into n partitions with each partition storing different messages. 
Specifically, messages with the same key will be stored in the same partition. n consumers can be 
subscribed to the partitioned topic with each consumer consuming from a different partition, thus 
enabling high throughput. A producer can store messages to the partitioned topic, and Apache Kafka 
will handle the load balancing of the messages among the partitions internally. In our use case, the vessel 
identifier can be considered as the message key, the AIS receiver as the producer and the trajectory 
classification modules as the consumers. An even distribution of the load within the nodes of the system 
reduced the probability that a node would turn into a hotspot, and this property also acted as a safeguard 
to the system reliability. 

The trajectory classification modules were the main components of the methodology. Each trajectory 
classification module was responsible for consuming AIS messages from a set of vessels and classifying 
parts of their trajectories based on the deep learning model created in the previous phase. To classify 
parts of the vessels’ trajectories, the module used a temporal sliding window W of user-defined length 
L and step S. Every S AIS messages, the module took into account all of the AIS messages of the 
corresponding vessel that belonged to the current window W and converted them to an image. Next, the 
deep learning model read the image and output for each of the predefined vessel activities a probability. 
The vessel activity with the highest probability was the final prediction of the module. It is worth noting 
that in order to leverage execution performance the Scala programming language was used for the real-
time trajectory classification modules. 

  

                                                      
12 https://kafka.apache.org/ 

https://kafka.apache.org/
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6. Conclusions 
 
This deliverable reports the design and the development of the IoT-based Data Analytics module of 
SMARTSHIP, which will be the core of the multi-level optimization of the vessels’ operation and 
management in terms of fuel consumption, energy efficiency, emissions, and circular economy 
principles. 
 
Furthermore, it enables the reader to define the fields of IoT and Advanced Data analytics on how they 
applied in the maritime sector. 
 
The deliverable is active throughout the Work Package 4 which contains three tasks; Tasks are related 
with the above aforementioned sections. All the three tasks are ongoing until M48 of the project, in 
March 2023. 
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8. Appendix I 
 

A. Weather service code block snapshot: 
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